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1 Conformality or confinement: introduction and summary

A new method to determine the long distance behavior of asymptotically-free nonabelian
gauge theories with fermionic matter was presented in [1]. The basic idea is to employ
the mass gap for gauge fluctuations as an invariant characterization of conformality versus
confinement.1 Deformation theory and/or the twisted partition function permit a con-
trolled calculation of the mass gap for gauge fluctuations in the theory compactified on
S1×R3 for a finite (or sometimes infinite) domain of S1 sizes [2–4]. The deformations were
also independently proposed as a useful tool to study phases with partial center symmetry

1The notion of the mass gap of a theory is different from what we call the mass gap for gauge fluctuations;

see appendices A, B for discussion.
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breaking on the lattice [5–7]. The idea to use the mass gap as a characterization of the
conformal window has also been exploited in the worldline formalism [8]. The analysis
of [1] was generalized to all classical Lie groups in [9].

In [1], we partially showed and in part conjectured that gauge theories fall in one of
four classes — that we refer to as class-a, -b, -c, or -d — with respect to the behavior of
the mass gap for gauge fluctuations as a function of the S1 radius L. The four possible
behaviors, also shown on figure 1, are:

• The behavior of figure 1a.) holds for a small or vanishing number, Nf , of massless
fermionic species (“flavors” in QCD-like theories). One can show, in the controlled
semiclassical domain of abelian confinement, that the mass gap for gauge fluctuations
increases with the radius of S1 and conjecture that it saturates to its R4 value in the
non-abelian strongly-coupled confinement domain.

• The behavior of figure 1b.) holds for Nf sufficiently large, perhaps just below the
asymptotic freedom boundary on the number of fermions, NAF

f . The mass gap is a
decreasing function of the radius at small S1 and decreases further upon approaching
R4. There are theories in this class for which the semiclassical analysis applies at any
size S1.

• figure 1c.) shows a mass gap that decreases with radius in the semiclassical domain
but then saturates to a finite value on R4. This can happen, for example, if χSB
takes place on the way.

• figure 1d.) shows a mass gap starting to increase with the radius in the semiclassical
domain, however, before reaching ΛNL ∼ 1, the coupling reaches a fixed point value
without triggering χSB and the mass gap decreases to zero on R4.

In [1], we argued that small- and large-Nf theories are class-a and class-b, respectively,
in all of the theories considered. The value of Nf where the small-LNΛ behavior of the
mass gap switches from increasing to decreasing with L was taken as an estimate of the
lower boundary of the conformal window, N∗f . However, apart from admitting the logical
possibility, we did not show whether class-c or class-d behavior occurs in any gauge theory.2

1.1 Single-flavor CFTs

In this paper, we will first provide an example of a class-d gauge theory. It turns out
that this behavior is possible for a very interesting class of gauge theories, which flow to
CFTs in the IR. In order for class-d behavior to take place, the theory must have an in-
creasing behavior of the mass gap in the very small S1 domain — and thus be a decidedly
small-Nf theory — and a weak-coupling fixed point (so that χSB by a fermion bilinear
is not triggered). Indeed, we will show that there is a somewhat exotic class of one-flavor
asymptotically-free gauge theories for which these two behaviors are compatible. Few exam-
ples are one-flavor SU(2) with 4-index symmetric representation fermions, and SU(3) and

2Except the class-c window between the estimate of [1], N∗
f = 2.5N , and Nf = 2.61N , where the sign

of the second coefficient of the beta function changes.
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Figure 1. Possible behavior of the mass gap for gauge fluctuations in asymptotically free, center-
symmetric theories as a function of the size L of S1. The semiclassical analysis is valid at LNΛ� 1,
where N is the number of colors, and Λ is either the strong scale, for confining theories, or the scale
where the running coupling saturates its IR fixed-point value.

SU(4) gauge theories with 3-index symmetric representation fermions (for Dirac fermions
in the 3-index symmetric-tensor representation asymptotic freedom is lost at N = 5).

In section 2, we study in detail only one example of this class. We will show that the
dynamics of a vectorlike SU(2) Yang-Mills theory with a single Weyl fermion with j = 2,
i.e. the 4-index symmetric-tensor representation, is amenable to an analytical treatment on
arbitrary size S1×R3 and R4. At any finite S1×R3, it exhibits confinement with discrete
χSB and has isolated vacua. However, the χSB happens not via the condensation of a
fermion bilinear but via that of the topological disorder operator, generating a 4d-complex
mass gap for fermions. This new and interesting phenomena will be discussed in detail
below and section 4. We find bounds on the mass gap, show that the isolated vacua are of
run-away type in the decompactification limit and that the R4 limit is a CFT. To the best
of our knowledge, among theories without continuous global symmetries, this is the first
example of a theory that flows to an interacting CFT.

1.2 Mixed-representation QCD and improvement of the conformality bound

Our next goal is to determine the theories that may be class-c. Especially for theories with
fundamental fermions, we suspect that there are many theories in this class and that the
conformal window starts at a value larger than the critical N∗F = 2.61N obtained in [1].
The theories with NF < 2.5N are class-a and we want to know which theories are class-c
and -d.
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In section 3, we study this question using the following strategy. Consider a mixed-
representation QCD with Nadj adjoint Weyl and NF fundamental Dirac fermions, which we
call QCD(adj/F). Note that, for perturbative purposes, one adjoint Weyl is approximately
N Dirac fundamental fermions. As in [1], we calculate the mass gap for gauge fluctuations
in QCD(adj/F) in the semiclassical domain and obtain:

mσ ∼ Λ(ΛL)
4
3

(4−Nadj−
NF
N

), for Nadj ≥ 1 , (1.1)

while the result of [1] for the Nadj = 0 theory is:

mσ ∼ Λ(ΛL)
1
3

( 5
2
−NF

N
). (1.2)

In theories with Nadj≥1, the mass gap mσ in (1.1) is induced by magnetic bions, as dictated
by the relevant index theorem [10, 11], while at Nadj=0, mσ in (1.2) is due to monopoles
(this explains why (1.1) does not reduce to (1.2) when Nadj=0).

As eq. (1.1) indicates, once we take Nadj=1, the critical number of fundamental
fermions — at which the mass gap changes from an increasing to a decreasing function as
a function of L at fixed Λ — increases to NF=3N . Since adding more massless fermions
increases their screening effect, one does not expect the size of the conformal window to
decrease. Thus, we take the increase of the critical number of fundamental fermions upon
adding a single adjoint as an indication that some QCD(F) theories with NF > 2.5N are
class-c.

Now, in an attempt to estimate where the class-c behavior ends, we trade the adjoint
with N fundamentals. If QCD(adj/F) theories with (Nadj=1, NF<3N) are class-a, then
QCD(F) theories with 2.5N<NF<4N belong to class-c. However, it is also possible that
some QCD(adj/F) theories in the same domain, but with NF close to 3N , exhibit type-d
behavior. In that case, their “image” QCD(F) theories are expected to exhibit class-b
behavior, instead of c, since for such values of NF the mass gap at small L decreases
with radius. Thus, we expect NF = 4N to be an upper bound for the lower boundary of
conformal window for QCD(F).

The so “refined” upper bounds on the lower boundary of the conformal window in
QCD-like theories with Dirac flavors in the fundamental, symmetric, antisymmetric, and
adjoint representations are shown on figure 2. We note that for two-index representations
the “refined” and “un-refined” older estimates of [1] coincide. This is because for two-
index representations confinement is predominantly due to magnetic bions, see [1], thus
the analogue of the different behaviors (1.1) and (1.2) for QCD(adj/F) do not appear upon
replacing fundamentals with a two-index representation flavors. We note that our “refined”
estimates come remarkably close to those of other older or recent analytical approaches,
which are referred to in section 3.4.

1.3 Chiral symmetry and disorder operators

The formalism of refs. [2, 3] revealed the existence of a large class of new non-selfdual topo-
logical excitations, which are responsible for confinement on S1×R3. In section 4, we discuss
several new phenomena tied with chiral symmetry that we observed in our analysis of the
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single-flavor theories of section 2 and the mixed-representation ones of section 3. In both
classes of theories, as a direct consequence of the index theorem [10, 11], the pure flux parts
of the monopole-instanton induced operators (by “pure” we mean the operators stripped
from their fermionic zero-modes) are charged under the anomaly-free abelian discrete or
continuous global chiral symmetries of the theory, but not under its nonabelian chiral sym-
metries. This is interesting, because it tells us that apart from local fermion bilinears, there
also exist topological disorder operators (introduced by ’t Hooft [12]) charged under abelian
chiral symmetries. We show that these discrete or continuous anomaly-free abelian chiral
symmetries are spontaneously broken by the expectation value of these topological disorder
operators — and not by fermion bilinears acquiring a vev — in the small-S1 domain.

The combination of abelian duality [13] and index theorem [10, 11] in the long-distance
theories on small S1×R3 map the dynamical χSB (abelian) into spontaneous breaking by
a tree-level potential, itself induced by non-selfdual topological excitations. This mecha-
nism of χSB is similar, but not identical, to Seiberg-Witten theory with matter — where
4d monopole particles carrying nonabelian chiral charge can condense and break chiral
symmetry upon the addition of an N = 1 supersymmetric deformation [14]. Up to our
knowledge, the realization that topological disorder operators may lead to χSB is a new
phenomenon in QCD-like gauge theories.

The breaking of the abelian chiral symmetry on S1 × R3 occurs already in the weak-
coupling limit where the anomalous dimension of various fermion-bilinear order parameters
γψ̄ψ(L)� 1, hence summing ladder diagrams would not lead to χSB in the gap equation.
This is a shortcoming of (resummed) perturbation theory.

Interestingly, there is also a relation between the anomalous dimension of the fermion
bilinear and the action of a fundamental monopole S0 — which is equal to 1/N -th of the
4d instanton action and hence survives a large-N limit — which may provide some insight
to why the ladder approximation and our formalism produce very close estimates. At
one-loop level in perturbation theory and leading order in the semiclassical expansion:

γψ̄ψ(L) =
3
2
Ng2(L)

8π2
, S0(L) =

8π2

Ng2(L)
, γψ̄ψ × S0 = O(1) = O(N0) , (1.3)

where γ is given for the fundamental of SU(N) at large N (it equals twice that value for two-
index representations). At small-L, eq. (1.3) is obeyed with S0 � 1 and γψ̄ψ � 1, justifying
the use of perturbation theory and the semiclassical expansion. Thus, in the small-S1

domain, only the abelian chiral symmetries are broken by the mechanism described above.
Upon increasing L, there are two possibilities:

1. If γ(L) can ever reach unity, this also implies that monopoles and bions will reach a
non-dilute regime. In this case, the semiclassical approximation will break down at
LNΛ ∼ 1. Beyond LNΛ ∼ 1 is the domain of nonabelian confinement.

2. If γ(L) can never reach to one and remains small at any radius, monopoles and bions
will remain dilute at any radius. In this case, semi-classical analysis may be valid at
all radii, and the theories exhibit abelian confinement at finite S1.

– 5 –
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In the first case, multifermion operators generated by monopoles become strong and are
expected to trigger both abelian and nonabelian χSB. This is similar to the χSB in the
Nambu-Jona-Lasinio (NJL) model. A simple analysis demonstrates that this phenomenon
occurs at LNΛ ∼ 1, the boundary of reliability of the semiclassical analysis. In the second
case, multi-fermion operators can never become sufficiently strong to induce non-abelian
χSB. We suspect that the curious relation (1.3) is the reason why the unrelated lad-
der approximation (based on perturbation theory) and mass gap criterion of deformation
theory (based on topological excitations) produce such close estimates for the conformal
window boundary.

To sum up, our formalism provides a derivation of confinement and abelian χSB within
the domain where the semiclassical analysis is reliable and gives some insight regarding the
mechanisms of confinement and χSB.3 If pushed to the boundary of its region of validity,
it also accommodates non-abelian χSB by naturally generating a sufficiently strong NJL-
model, for the first class of theories described above.

2 Solvable one-flavor QCD-like theories and a new class of CFTs

The standard expectation regarding one-flavor QCD-like theories is confinement, mass gap,
and (discrete) chiral symmetry breaking. In this section, we argue for the existence of a new
class of QCD-like CFTs within the world of one-flavor theories. Moreover, these theories
are semiclassically solvable on S1 × R3 of any radius.

Although our idea is inspired by the Banks-Zaks (BZ) limit [15], it is also opposite
to it in some sense. In BZ (SU(N) QCD with Nf fundamental Dirac flavors), one takes
the large-N , large-Nf limit and dials Nf

5.5N = 1 − ε, where ε � 1. We propose, instead,
to consider an Nf = 1 theory and use the number of indices in the representation of
fermion fields as a parameter. For example, for one 3-index symmetric representation Dirac
fermion, N = 2, 3, 4 theories have asymptotic freedom, while for the 4-index symmetric
representation, only SU(2) with one-Weyl fermion is asymptotically free. In both cases,
the two-loop perturbative β-function has a fixed point at weak coupling, as weak as, for
example, NF=15 SU(3) QCD. However, unlike the BZ limit, this is not a tunable coupling.4

A topological distinction is manifest in SU(2) gauge theories with Weyl fermions in
a spin-j representation. Theories for which 2j = 1(mod4) do not exist, due to the global
Witten anomaly. The theories with 2j = 1, 3(mod4) are chiral, and the ones with 2j =
0, 2(mod4) are vectorlike. A fermion bilinear does not exist (or vanishes identically) in the
chiral case, and is nonvanishing for the vectorlike theories, for example:

ψ2 = εα1α2εa1a2ψα1,a1ψα2,a2 = 0, j =
1
2
,

ψ2 = εα1α2εa1a2εb1b2ψα1,a1b1ψα2,a2b2 6= 0, j = 1, (2.1)

3 A pertinent outcome of this analysis, which goes against the common lore, as reviewed in [1], is that the

mechanism of confinement in a given gauge theory is dependent on the representation of fermionic matter,

in a way dictated by the index theorems [10, 11].
4In 3d, a tunably small fixed-point coupling can be achieved by using multi-index representations [16].
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where α is the SL(2,C) index for a Weyl fermion. The theories for which 2j ≥ 5 are
infrared free.

The vectorlike theory with a single Weyl fermion with j = 1 is N = 1 supersymmetric
and has been the subject of many past studies, while the chiral theory with j = 3/2 was
recently studied in [16] using methods similar to the ones of this paper. Here, we consider
the SU(2) gauge theory with a single Weyl fermion in the j = 2 representation. The
Lagrangian is:

L =
1

4g2
trF 2

µν + ψiσ̄µDµψ, ψ = ψabcd . (2.2)

The classical theory has a chiral U(1) symmetry, ψ → eiαψ. However, quantum mechan-
ically, this symmetry reduces to a discrete subgroup due to instanton effects. A single
instanton has Iinst = 20 zero modes and the ’t Hooft interaction:

I(x) = e−Sinstψ20, Sinst =
8π2

g2
, (2.3)

is only invariant under Z20 ⊂ U(1). Consequently, the chiral symmetry of the quantum
theory is:

Z20 : ψ → ei
2πk
20 ψ, k = 1, . . . 20. (2.4)

A Z2 subgroup of Z20 is fermion number modulo two and cannot be spontaneously broken
so long as Lorentz symmetry is unbroken. If chiral symmetry breaks in this theory, the
expected chiral symmetry breaking (χSB) pattern is Z20 → Z2, leading to ten isolated
vacua. This theory has two options in the infrared — confinement, mass gap and discrete
χSB, or conformality, absence of mass gap, and absence of χSB.

In the next few sections, we will show that most interesting nonperturbative aspects
of this theory can be derived on S1 × R3 geometry for any value of 0 < L <∞. We show
that this theory exhibits mass gap and discrete χSB in the 0 < L <∞ range and has ten
isolated vacua. However, in the L →∞ limit, the mass gap vanishes and the ten isolated
vacua run away to infinity. We demonstrate that the results on finite but arbitrary S1×R3

can be used to put a rigorous bound on the mass gap of the theory on R4 and claim that
the theory on R4 is a (not too strongly) interacting CFT.

2.1 Twisted partition function, Wilson-line eigenvalues, and Buridan’s donkey

We use the twisted partition function to study the dynamics of this class of theories on
R3 × S1:

Z̃(L) = tr
[
e−LH(−1)F

]
. (2.5)

Let Ω(x) = ei
R
A4(x,x4)dx4 denote the holonomy along the compact direction. It can be

brought into a diagonal gauge, shown below for the fundamental representation:

Ω(x→∞) =

(
eiv 0
0 e−iv

)
. (2.6)

– 7 –
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In an appropriate range of L, where the gauge coupling is small, we may evaluate the
one-loop effective potential for the holonomy at infinity, Ω, reliably. The result is:

V +
R [Ω] =

2
π2L4

∞∑
n=1

1
n4

[−tradjΩn + trRΩn] . (2.7)

The first term is due to gauge fluctuations and the second term is induced by Weyl fermions
in a representation R endowed with periodic boundary condition as per (2.5). There are
O(g2) corrections to this formula, which are negligible so long as the running coupling con-
stant remains small. Using character formulas relating the trace in a spin-j representation
to that in the defining representation, denoted simply by tr:

trj=1(Ω) = (trΩ)2 − 1, trj=2(Ω) = (trΩ)4 − 3(trΩ)2 + 1 , (2.8)

we obtain:

V +
4S [Ω] =

2
π2L4

∞∑
n=1

1
n4

[
(trΩn)4 − 4(trΩn)2

]
. (2.9)

This is an interesting potential. At its minimum, the eigenvalues are neither coincident
nor are they maximally apart — the minimum of our one-loop potential (2.9) is located
at 〈 trΩN 〉 = ± 1√

2
. This should be compared to the more renowned values of Wilson-line

expectation values:

〈trΩ
N
〉 = 1 : thermal, 〈trΩ

N
〉 = 0 : center− symmetric. (2.10)

For our circle-compactification of the j = 2 theory, one of the minima is at:

〈Ω〉 =

(
eiπ/4 0

0 e−iπ/4

)
, 〈trΩ

N
〉 =

1√
2

(2.11)

The physics at the other minimum of (2.9) is identical; an exact Z2 center symmetry in
this theory (matter is in an even “N -ality” representation) interchanges the two minima,
trΩ→−trΩ. Thus, center symmetry is in fact broken, but in a very unconventional way.
Because the eigenvalues are well separated, the gauge symmetry is also broken, SU(2) →
U(1). The rule of thumb, based on experience with other theories in the small-S1 regime
is that if center symmetry is broken, eigenvalues clump and gauge symmetry remains
unbroken. If the center is unbroken, then the eigenvalues repel and gauge symmetry is
broken down to the maximal abelian subgroup. The eigenvalue dynamics of this theory
fits neither characterization5 and is somehow reminiscent of Buridan’s donkey.

Thus, on R3 × S1, the gauge structure at distances larger than the compactification
scale reduces to an abelian U(1) gauge theory and the theory can be described in terms of
the perturbatively massless degrees of freedom. These are the photon (or its dual scalar)
and a fermion component left massless by the action of the holonomy vacuum expectation

5Note that center symmetry breaking and confinement are not in conflict here — there is no thermal

interpretation of the twisted partition function.
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value (vev) (2.11) in the four-index symmetric representation. The symmetric ψabcd can
be written as five-component vector. The action of the background vev on ψabcd and the
component form of ψabcd are:

〈A4L〉 = v0T3 ≡


2v0

v0

0
−v0

−2v0

 ψabcd =


ψ1111

ψ1112

ψ1122

ψ1222

ψ2222

 ≡

ψ+2

ψ+1

ψ0

ψ−1

ψ−2

 . (2.12)

This implies that ψ1122 remains massless to all orders in perturbation theory. The subscript
in the second form of ψabcd in (2.12) labels the charge under the unbroken U(1), which
implies that ψ1122 = ψ0 is a non-interacting fermion in the long-distance theory. The
charged components of the fermions, on the other hand, acquire 3d real-mass due to gauge
symmetry breaking; note that these mass terms are not 4d Lorentz invariant, but preserve
the global chiral symmetry, as it comes from the Dirac operator of the 4d theory.

This result is valid to all orders in perturbation theory and the IR theory (at distances
larger than L) is a 3d-Maxwell theory with a non-interacting fermion:

Lpert.theory =
L

4g2(L)
F 2

3,ij + Lψ0iσ̄i∂iψ0, (2.13)

We would like to see whether the dual photon and the massless fermion may acquire mass
due to nonperturbative effects.6

2.2 Demonstration of mass gap

Since the holonomy (2.6) causing the gauge symmetry breaking SU(2)→ U(1) is compact,
there exist two types of monopoles — BPS and Kaluza-Klein (KK) [17, 18], which we label
M1 and M2, respectively. The actions S1 and S2 of these two monopoles are determined
by the separation between eigenvalues of the Wilson line. Their actions relative to the 4d
instanton are:

S1 =
1
4
Sinst, S2 =

3
4
Sinst , (2.14)

as opposed to the usual equal actions (S = Sinst/2) for center-symmetric SU(2) com-
pactifications. For a background consisting of n1, n2 multiples of these two topolog-
ical excitations, the index of the Weyl operator in a spin-j representation with index
T (j) = (1/3)j(j + 1)(2j + 1) is given in [11]:

Ij [n1, n2] = n2 2T (j)− (n1 − n2)
j∑

m=−j
2m
⌊
− mvL

2π

⌋
, (2.15)

6 In the thermal case, the eigenvalues collapse to zero and there is no length scale at which the SU(2)

gauge structure reduces to its Cartan subgroup. Moreover, the fermions decouple from the IR physics, with

a O(T ) thermal mass. This is unlike the spatial compactification, where there are fermionic zero modes

surviving in the long distance regime.
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where v is the expectation value of the holonomy (2.6), bxc denotes the largest integer
smaller than x, and I2[1, 0] = IBPS, I2[0, 1] = IKK, I2[1, 1] = Iinst.. Thus, for j = 2, the
indices for the the BPS, KK, and 4d instanton are:7

IBPS = 6, IKK = 14, Iinst = IBPS + IKK = 20. (2.16)

This implies that the leading (anti)monopole-induced operators are:

M1 = e−S1eiσψ6, M1 = e−S2e−iσψ̄6,

M2 = e−S1e−iσψ14, M2 = e−S2eiσψ̄14 . (2.17)

The instanton operator may be viewed as a composite of the two types of monopole oper-
ators and is given by:

I ∼M1M2 ∼ e−Sinst ψ20, Sinst = S1 + S2 =
8π2

g2
. (2.18)

The elementary monopoles (2.17) and the instanton term (2.3) do not generate mass
for the dual photon and the zero-mode fermions ψ0. As usual, let us first demonstrate on
symmetry grounds that a non-perturbative mass for the photon is allowed. Since Z20 is
a non-anomalous symmetry of the microscopic theory, it must also be a symmetry of the
long distance theory. In particular, the invariance of the monopole operator M1 demands
that eiσ must transform non-trivially under Z20:

Z20

ψ 1

eiσ −6
. (2.19)

Thus, the theory in terms of the dual photon possesses a Z10 shift symmetry,8 which
forbids all purely bosonic operators eiqσ but q = 0(mod 10). The leading such purely
bosonic operator is:

(ei10σ + e−i10σ) ∼ cos 10σ . (2.20)

As strange as it may sound, this is the first operator which may generate a mass gap in the
gauge sector, but it is very suppressed in topological expansion. Below, we will provide an
explanation for this operator in terms of “elementary” topological excitations (2.17).

The ei10σ operator can be induced by a topological excitation with magnetic charge
+10 and zero net index. All fermion zero modes need to be soaked up. We need x M1

with fermions of one chirality to be contracted with (10− x) M2 which carry fermions of
opposite chirality. Since the least common multiple of two types of index is:

l.c.m.(IBPS, IKK) = l.c.m.(6, 14) = 42, (2.21)
7It would be interesting to see how these topological excitations and their indices arise by studying

orthogonal combinations of calorons [18] along the lines of [19].
8Clearly, M2 is also Z10 invariant.
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it follows that x = 7. This means that the pure flux operator ei10σ without any fermionic
zero modes has the same quantum numbers as the ten monopole state with the quantum
numbers of 7 BPS and 3 KK monopoles. We will refer to this excitation as a magnetic
decouplet. The magnetic decouplet operators are essentially:

MD = [M1]7[M2]3 ∼ ei10σ, MD ∼ e−i10σ , (2.22)

with all fermionic zero modes contracted. This is the leading object which generates a
mass term.9 The proliferation ofMD andMD, generate, in long-distance effective theory,
the potential:

e−7S1−3S2(ei10σ + e−i10σ) ≈ e−4Sinst cos 10σ (2.23)

This term induces a mass for the dual photon, as can be seen by expanding the potential
around one of its minima. Since σ is a variable with period 2π and the potential has ten
minima within the fundamental domain of σ, the Z10 symmetry is spontaneously broken.
The ten minima are located at:

〈eiσ〉 = ei
2π
10
q, q = 1, . . . 10. (2.24)

This Z10, as stated earlier, is the broken subgroup of Z20 discrete chiral symmetry.
Since the microscopic theory is a one-flavor vector-like theory, the discrete χSB Z20 →

Z2 must generate a 4d complex-mass term for fermions as well. Indeed, another composite,
this time of 2 BPS and 1 KK monopoles has two left-over zero modes after contractions,
and is the leading candidate to generate a fermion mass term:

[M1]2[M2] + h.c ∼ e−2S1−S2(ei3σψ2 + e−i3σψ2) −→ e−
5Sinst

4 (ψ2 + ψ2) . (2.25)

In the last stage, we expanded the σ field around the minimum at σ = 0. In four dimensional
one-flavor QCD-like theories, it is expected that χSB will generate a mass gap for fermions.
We show that this is indeed the case, however, what is surprising is that this phenomena
is driven by the condensation of a topological disorder operator (2.24).

The long-distance Lagrangian (2.13), now corrected for nonperturbative effects and
written in terms of the dual photon field σ, becomes:

Ldual =
g2

2L
(∂σ)2 + ψiσ̄i∂iψ + . . .︸ ︷︷ ︸

perturbation theory

+ e−S1eiσψ6 + e−S2e−iσψ14 + h.c.︸ ︷︷ ︸
magnetic monopoles

+ . . .

+ e−2S1−S2e−i3σψ2 + h.c.︸ ︷︷ ︸
magnetic triplets

+ e−7S1−3S2 cos 10σ︸ ︷︷ ︸
magnetic decouplets

+ . . . . (2.26)

In (2.26), we have normalized the fermion field as appropriate in 3d, omitted powers of
L needed to make up the dimensions of the multifermion and potential terms, as well as
numerical coefficients and (uncalculated) powers of g2.

9The magnetic and topological charges of these excitations are
“R

S2
∞
B,
R
F eF” =

`
±10,∓ 1

2

´
, where the

signs are correlated.
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The dual Lagrangian Ldual and the physics it encapsulates are the main results of
this section. Ellipsis in (2.26) represent perturbatively and non-perturbatively generated
operators that are subleading at small coupling (certainly, there are also other operators
until the tenth order in the semiclassical expansion is reached, but the leading operator
generating a mass gap for gauge fluctuations appears only at that order). We also kept
the operator which generates the mass gap in the fermionic sector. Expanding the dual
Lagrangian to quadratic order in fields around one of the ten isolated vacua, and restoring
the factors of L, one obtains

Ldual
quadratic =

g2

2L
(∂σ)2 +

1
L3
e−4Sinst.σ2 + ψiσ̄i∂iψ +

1
L
e−

5
4
Sinst.(ψ2 + ψ

2) . (2.27)

To summarize, we have shown that, at finite S1 × R3 the theory exhibits a mass gap,
confinement and discrete χSB. If this behavior continues to R4, this would imply that this
theory is confining on R4. However, we will demonstrate below a rigorous bound on mass
gap of gauge fluctuations valid at any L and show that it vanishes on decompactification
limit, implying conformality on R4.

Region of validity of the one-loop analysis and the semiclassical expansion: The
range of validity of the one-loop potential depends on whether the gauge coupling is weak
or not at the scale of compactification. For confining gauge theories, this implies a small-L
domain of validity L� Λ−1, where Λ is the strong scale of the theory. For asymptotically
free theories with a weak-coupling IR fixed point, the region of validity of (2.7) extends to
all values of S1 radius, i.e.:

g2(L) ≤ g2
∗ ≡ g2(L∗), for all L . (2.28)

In other words, the coupling at the scale of compactification first grows as in any asymptotically-
free theory, for sufficiently small L, L � L∗, and at the scale L∗ it saturates to its fixed
point value. The fixed point of the two-loop RG beta function is located at:

g2
∗ = −16π2β0

β1
≈ 0.74,

g2
∗

4π
� 1 . (2.29)

Thus, the one-loop potential (2.7) is reliable10 at any 0 < L <∞.

2.3 A non-perturbative bound on the mass gap and flow to conformality

First, consider the L � L∗ domain, where L∗ is the saturation scale of the coupling
constant. In this regime, the one-loop result for the β function dominates and the strong
scale is given by:

e
− 8π2

g2(L) = (ΛL)β0 , β0 =
11
3
N − 2

3
T (j)NW

f , T (j) =
1
3
j(j + 1)(2j + 1) . (2.30)

10g2
∗ is as weak as the fixed-point coupling of the 15-flavor SU(3) theory, which is argued to be conformal.

However, in the absence of a parametrically tunable fixed point coupling (as opposed to the BZ limit),

strictly speaking, we rely on the assumption that higher loops do not introduce large numerical factors.
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Setting j = 2 and the number of Weyl spinors NW
f = 1, we obtain β0 = 2

3 . The mass gap

for the dual photon is mσ ' 1
Le
−2Sinst(L) = Λ(ΛL)

1
3 . However, for L > L∗, the coupling

constant reaches its fixed point value. In this domain, the mass gap for gauge fluctuations
is, up to unimportant prefactors:

m(L) =

{
Λ(ΛL)

1
3 0 < L < L∗

1
L exp

[
−16π2

g2∗

]
, L∗ < L <∞

. (2.31)

There is a caveat to the above argument. If the fixed point is reached in a domain where
the monopole operators are non-dilute, the semiclassical approximation for L of order and
larger than L∗ is not to be trusted and along with it, also the second line in (2.31). On the
other hand, if the topological excitations remain dilute, the result shown in the second line
in (2.31) presents a rigorous bound on the mass gap of the theory, since the gauge coupling
at any scale is smaller or equal to the fixed-point value.

In the theory at hand, the instanton factor at the fixed point, as well as the monopole

fugacities are actually exponentially small: e−Sinst ∼ e
− 8π2

g2∗ ∼ e−106, e−S1 ∼ e
− 8π2

4g2∗ ∼
e−26.75. This retrospectively justifies the use of the semiclassical expansion at any value of

0 < L <∞. Thus, since e
− 8π2

g2(L) ≤ e
− 8π2

g2∗ , this implies a tiny upper bound on the mass gap
on R3 × S1 of any size:

m(L) ≤ 1
L

exp
[
−16π2

g2
∗

]
∼ 1
L
e−212. (2.32)

Since the dual photon mass11 is approximately equal to mσ ∼ 1
Le
−2Sinst , confinement

on R3×S1 sets in at distances m−1
σ ∼ Le+2Sinst (we also note that in terms of a canonically

normalized dual photon field, the χSB vacua are “runaway” to infinity in the infinite-L
limit). We can safely say that it is impossible to see the confining regime of this theory in
any practical lattice simulation.12 In the decompactification limit, eq. (2.32) implies that:

m(R4) = lim
L→∞

m(L) = 0 , (2.33)

showing gaplessness of the theory on R4. On R4, we do not expect dynamical abelianization
to take place at any length scale in this gauge theory. Rather, we expect, the W -boson
components of the gauge fluctuations to remain massless as well. The long distance theory
on R4 is described in terms of short distance quarks and gluons and the long distance
lagrangian is the same as the classical lagrangian.

11 Validity of the effective field theory described by the dual Lagrangian (2.26) requires a separation of

scales between the W± boson mass, ∼ 1/L, and the dual photon. Since mσ/mW ∼ e
− 16π2

g2 this separation

is manifest at weak coupling. Note also that the dual photon is a scalar in the 3d long-distance theory.

The small value of m(L) is another example showing how a mass term may in fact be irrelevant and small

without fine-tuning, akin to the pseudogoldstone mechanism.
12 If this theory is simulated on a four dimensional asymmetric toroidal lattice with L3

1 ×L2 sites (L1 �
L2), the low energy limit of this theory will be seen as an abelian Coulomb phase as described in (2.13), a

pure non-compact Maxwell theory on R3 and a massless fermion. If the lattice is toroidal and symmetric,

then a dynamical abelianization is not expected to occur.
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U(1)B U(1)A SU(NF)L SU(NF)R
λ 0 1 1 1
ψL 1 − N

NF
� 1

ψR −1 − N
NF

1 �

eiαiσ 0 −2 1 1
eiαNσ 0 (2N − 2) 1 1

ei(αi−αi+1)σ 0 0 1 1
ei(αN−1−αN )σ 0 −2N 1 1
ei(αN−α1)σ 0 2N 1 1

Table 1. Fields and global symmetries of QCD with mixed adjoint/fundamental fermions.

Thus, the SU(2) theory with a one-flavor four-index symmetric representation Weyl
fermion belongs to the class of one-flavor CFTs with high-index representations. The
results of this section show that it is an example of class-d in our classification shown in
figure 1. Other examples are theories with one-flavor 3-index symmetric representations
with gauge groups SU(3) and SU(4), whose dynamics can be worked out along similar lines
(recall that at N = 5 asymptotic freedom is lost).

3 QCD with mixed-representation fermions

Consider now SU(N) Yang-Mills theory with one adjoint Weyl fermion λ and NF Dirac

fundamental fermions, Ψ =

(
ψL
ψR

)
. The global chiral symmetry of the classical theory is

U(1)λ × U(1)B × U(1)Ψ × SU(NF)L × SU(NF)R where the U(1)λ acts on λ and U(1)Ψ is
the axial symmetry acting on Ψ in a canonical way. In contradistinction to the theories
with one type representation, where there is only one classical axial symmetry, reduced to a
discrete symmetry by instantons, in theories with mixed representation fermions, instanton
effects just reduce the U(1)λ × U(1)Ψ to a diagonal axial group U(1)A. Inspecting the ’t
Hooft vertex:

I(x) = e−Sinst(λλ)N
[
(ψ1

Lψ
1
R) . . . (ψNF

L ψNF
R ) + . . .

]
= e−Sinst(λλ)N det

I,J
ψILψ

J
R , (3.1)

it is evident that the instanton operator is invariant under the axial U(1)A generated by
QA = Qλ − N

NF
QΨ. Thus, the continuous symmetries of the quantum theory are as shown

below (the charges of the various monopole and bion operators are also given in table 1
and are explained further in this section).13

13Readers familiar with SUSY-QCD will find these transformation properties familiar. In the supersym-

metric context, the chiral U(1)A is an R-symmetry, under which the fermions have the same charges. This

is, of course, expected because the (Nadj, NF) = (1, NF) theory can be obtained by setting the scalar masses

in SUSY-QCD to infinity. Once this is done, one obtains not the usual QCD(F), but the QCD-like theory

with mixed-representation matter. The chiral symmetries are unaltered by this procedure.
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We consider the mixed-representation theory with periodic spin connection for fermions
on R3 × S1 and apply double-trace deformations to preserve the center symmetry.14

On R4, the standard expectation regarding this theory, for a low number of fermions,
is spontaneous breaking of all axial symmetries, down to U(1)B × SU(NF)L+R. Note that,
one also expects the U(1)A, which is an exact symmetry in this theory, to break down
spontaneously. Thus, there must be N2

F Goldstone bosons, as opposed to N2
F − 1. For

theories in the conformal window, no symmetry is expected to be broken spontaneously.
At small S1, there are N -types of fundamental BPS and KK monopoles due to gauge

symmetry breaking SU(N) → U(1)N−1 by the Wilson line holonomy. By using the index
theorem [10, 11], we deduce that:15

Mi = e−S0eiαiσ(αiλ)2, MN = e−S0eiαNσ(αNλ)2 det
I,J

ψILψ
J
R i = 1, . . . N − 1 , (3.2)

where α1, . . . , αN denote the affine roots of SU(N) and S0 = 8π2

g2N
. Note that the monopole

operators are manifestly invariant under U(1)B × SU(NF)L × SU(NF)R. Invariance under
the anomaly-free axial symmetry U(1)A demands the charge assignments for the pure
monopole operators shown in (1).

Note that the charge assignments are unlike the NF=0 theory (which has N=1 su-
persymmetry), where all N monopole operators have charges −2 under the anomaly free
(discrete) chiral symmetry. This implies, following the analysis of [2] that there are N − 2
rather than N magnetic bions where all fermion zero-modes can be soaked-up. The two
other composites still carry zero modes. The bion operators are:

Bi =MiMi+1 = e−2S0ei(αi−αi+1)σ , i = 1, . . . N − 2 ,

BN−1 = e−2S0ei(αN−1−αN )σ det
I,J

ψ
I
Lψ

J
R , BN = e−2S0ei(αN−α1)σ det

I,J
ψILψ

J
R . (3.3)

Since there are N − 1 dual photons in the IR, but only N − 2 of them obtain mass due
to the bion-generated potentials, one dual photon remains massless. In order to understand
the nature of this photon, it is useful to discuss the simplest example, the SU(2) gauge
theory with (Nadj, NF) = (1, 1).

3.1 (Nadj = 1, NF = 1) SU(2) gauge theory

The SU(2) gauge theory with mixed representations hosts some new and interesting phe-
nomena. On R4, the instanton operator is:

I(x) = e−SI (λλ)2(ψLψR) , (3.4)

14A generalization of this analysis which incorporates Nadj > 1 Weyl adjoint fermions does not require

double-trace deformations if periodic boundary conditions for the fermions on S1 are used. For the Nadj = 1

theory, the one-loop potential is order N rather than O(N2). Thus, a tiny deformation is good enough to

preserve the (approximate) center symmetry.
15By using a U(1)B-twist in boundary conditions of fermions, the fundamental zero modes can always be

localized to the N th (“Kaluza-Klein”) monopole. This is assumed in our charge assignments for monopole

operators, is done for convenience, and does not invalidate the generality of the results.
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and the theory has an exact U(1)B ×U(1)A symmetry16 with charges:

U(1)B U(1)A
λ 0 1
ψL 1 −2
ψR −1 −2

eiσ 0 −2

(3.5)

On R3 × S1, there are two-types of monopole operators:

M1 = e−S0eiσλ2, M2 = e−S0e−iσλ2ψLψR (3.6)

The invariance of monopole operators under U(1)A demands the dual photon to transform
as given in (3.5).

Expectations on R4: On R4, this theory is expected to confine and break its chiral
U(1)A symmetry. This implies the existence of one Nambu-Goldstone (NG) boson. The
fluctuation around the vacuum can be parameterized as:

〈λλ〉 = Λ3eiπ/fπ , 〈ψLψR〉 = Λ3e−2iπ/fπ (3.7)

where π is the massless “pion.” It is also expected that for L > Λ−1, a long distance
description based on the “chiral Lagrangian” of the pion will be adequate.

Center-stabilized theory on small S1 × R3: Because of gauge symmetry breaking
SU(2) → U(1), the long distance theory can be described in terms of the photon and the
component of the adjoint fermion along the Cartan subalgebra. The center symmetric
vev 〈A4L〉 = Diag

(
π
2 ,−

π
2

)
generates a 3d-real mass term for the fundamental fermions.

The real mass term, as opposed to 4d-complex mass term, respects chiral symmetry. The
effective Lagrangian for the perturbatively massless modes is denoted by L0, and also
keeping the lightest mode of fundamental fermions L1 for later convenience, we find:

Ldual = L0 + L1,

L0 =
g2

2L
(∂σ)2 + λiσ̄i∂iλ+ e−S0(eiσλ2 + h.c.), (3.8)

L1 = Ψ̄i(γ̄iDi+iγ4〈A4〉)Ψ+e−S0
(
e−iσλ2ψLψR+h.c.

)
+e−2S0

(
e−2iσψLψR+h.c.

)
. (3.9)

Interestingly, L0 is the lagrangian obtained in 3d Yang-Mills theory with adjoint Higgs
scalar and adjoint fermion in [20]. One can examine (3.8) perturbatively, by expanding
around σ=0. Since eiσ is charged under U(1)A, this is equivalent to the spontaneous
breaking of U(1)A. As argued in [20], the photon in this theory remains massless and is,
in fact, a NG boson. The spontaneous breaking of U(1)A by 〈eiσ〉 = 1 generates a mass
term for the adjoint fermion, and a 4d-complex mass for the fundamental fermions (which
already possess a 3d-chiral symmetric mass term due to 〈A4〉), given by:

Ldual ⊃ e−S0〈eiσ〉λ2 + e−2S0〈e−2iσ〉ψLψR + h.c. = e−S0λ2 + e−2S0ψLψR + h.c. (3.10)
16U(1)B is actually the T 3 part of the enhanced SU(2) flavor chiral symmetry acting on ψL,R, which,

however, remains unbroken.
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Interpolating between small and large S1 × R3: The picture that emerges when
combining the above analysis with the expected behavior on R4 is that U(1)A is broken at
both small and large LΛ, but in an unconventional way. The picture we advocate is shown
below:

(Nadj, NF) = (1, 1) : ••
〈eiσ〉 = 1

L//〈λλ〉 = Λ3 R4R3

. (3.11)

In other words, the order parameter for χSB at small S1 is a topological disorder operator,
charged under U(1)A and the photon is the corresponding NG-boson. This phenomenon is
possible, because the long distance theory is 3d, where photon can be dualized to a scalar.
On the other hand, at large LΛ, we expect χSB due to a local order parameter, the chiral
condensates given in (3.7). Thus, we conjecture the existence of a Goldstone boson at
any L.17

To see how the small- and large- ΛL pictures can merge together, we can extrapolate
the dual Lagrangian (3.8) and (3.9) to the boundary of its region of validity (i.e., to ΛL ∼ 1)
and employ the chiral symmetry breaking induced by the order parameters (3.7). Then we
find that (3.8) produces:

Ldual ⊃ e−S0eiσ〈λ2〉+ h.c ∼ e−S0Λ3 cosσ , (3.12)

i.e., a mass term for the dual photon. Thus, the gauge fluctuations in this domain are
gapped. At large L the only massless mode is due to the fluctuations of the chiral conden-
sate parametrized by the pion field.

3.2 General case of (Nadj, NF)SU(N) gauge theory

Here, we briefly consider theories with Nadj ≥ 1 and NF arbitrary on R4 and R3×S1. The
charges of local fields and interesting topological operators can be found by following the
earlier analysis. The fundamental fields’ charges are:

U(1)B U(1)A SU(NF)L SU(NF)R SU(Nadj)
λ 0 1 1 1 �

ψL 1 −NNadj

NF
� 1 1

ψR −1 −NNadj

NF
1 � 1

(3.13)

We will call theories with fermion matter content described above QCD(adj/F).
For confining gauge theories, NF-small, at radius LNΛ � 1, these theories exhibit

confinement without SU(NF)L×SU(NF)R×SU(Nadj) chiral symmetry breaking. N−2 dual
photons acquire mass via the magnetic bion mechanism and one remains massless. Similar
to the SU(2) example, the massless dual photon has an interpretation as a Goldstone boson
of the spontaneously broken U(1)A and we believe that U(1)A is broken both at large and
small LNΛ. At large NLΛ, the non-abelian part of the chiral symmetry is also expected
to be broken down to the diagonal SU(NF)L+R × SO(Nadj).

17In supersymmetric theories, discrete χSB by disorder opeartors has already been observed [21] (such

as SU(2) SYM on R3 × S1), but we are not aware of supersymmetric examples with continuous χSB due

to disorder operators in the same geometry.
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For theories which flow to conformality on R4, U(1)A remains broken at finite S1 and
gets restored in the decompactification limit.

3.3 Generalization of Banks-Zaks CFTs

The BZ limit corresponds to a tunably small fixed-point coupling, achieved by setting
NF
N = 5.5(1 − ε), where N → ∞ and ε � 1 (recall that 5.5N is the asymptotic freedom

boundary on the number of flavors in QCD(F)). In this domain, the first and second order
beta function coefficients balance out and higher orders are suppressed by extra powers of
ε. Thus, they can be dropped safely. A BZ-limit does not exist for two-index representation
fermions, for which the asymptotic freedom boundary at large-N is 5.5 and since Nf is
integer valued, the best one can get is a (numerically) weak-coupling fixed point, which
is not a parametric smallness. There is a simple generalization of the BZ-limit in case of
mixed representation theories with an admixture of two- and one-index fermions. Consider
the QCD(adj/F) theory (3.13). Then, taking:

NF

N
+NAdj = 5.5(1− ε) , (3.14)

one can tune ε � 1 small for any value of NAdj ≤ 5 to ensure that the loop expansion
parameter at the fixed point can be made parametrically small, g2∗N

16π2 ∼ ε.
It is also worth noting that among such theories with NAdj = 5 and NF = 0.5N(1− ε)

with a tunably small BZ-type fixed point, an analytic solution of the theory may be given
at any R3×S1 by employing the twisted partition function. In this case, the eigenvalues of
the Wilson line are approximately uniformly distributed and the semiclassical analysis can
me made reliable at any radius. Thus, the concern raised in footnote (10) can be avoided
safely as the coupling constant can be made parametrically small. By using the techniques
of [1, 2], this class of 4d gauge theories can be solved analytically.

The one-loop potential is:

V +
Adj/F[Ω] =

2
π2L4

∞∑
n=1

1
n4

[
(NAdj − 1)|trΩn|2 +NF(trΩn + h.c.)

]
, (3.15)

and the corrections are parametrically suppressed due to the tunable BZ-fixed-point value.
Note that in this potential, the effect of fundamental fermions is suppressed relative
to the adjoint fermions and gauge bosons. The contribution of adjoint fluctuations is
(NAdj − 1)O(N2) and the one of fundamental fermions is NFO(N). Since the number of
fundamental flavors is also O(N), the second contribution is not suppressed at large-N .
But despite that, since NF/N

(NAdj−1) ≈
1
8 , the back-reaction of fundamental matter is small.

Around the center-symmetric background, we can use semiclassical analysis, which
is now reliable at any radius. This gives us a way to calculate the mass gap for gauge
fluctuations:

m(L) ≤ 1
LN

exp
[
− 8π2

g2
∗N

]
∼ 1
LN

exp
[
− 1

2ε

]
. (3.16)

This is a scale non-perturbatively suppressed with respect to 1/LN . In the decompactifi-
cation limit, the mass gap for gauge fluctuations vanishes, as in a BZ-type CFT at R4.
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3.4 Refinement of the conformality or confinement criterion

In previous work, as reviewed in the Introduction, we classified QCD-like theories in four
groups according to their mass gap profiles as a function of L. From the analysis of [1],
we know that the QCD(F) theories with Nf < 2.5N are in class-a. Since the two-loop
beta-function acquires a zero only at Nf = 2.61N , we argued that the theories in the range
2.5N < Nf < 2.61N must be class-c. Our next goal is to attempt to determine the highest
value of Nf for class-c theories and thus to improve our previous estimate of the lower
boundary of the conformal window. Of course, by using QCD(F) per se, this cannot be
determined by means of semiclassical techniques. Instead, in order to make some progress,
we will use a mixed-representation QCD with one adjoint Weyl and Nf fundamental Dirac
fermions.

The mass gap for gauge fluctuations in QCD(adj/F) in the semiclassical domain is
generated by magnetic bions. Combining the Nadj = 0 analysis of [1] with an analysis
similar to the one done for the SU(2) theory above gives:

mσ ∼
1
L
e−

S0(L)
2 = Λ(ΛL)

b0
2
−1, b0

2 − 1 = 1
3(5

2 −
NF
N ) Nadj = 0, (3.17)

mσ ∼
1
L
e−S0(L) = Λ(ΛL)b0−1, b0 − 1 = 4

3(4−Nadj − NF
N ) Nadj ≥ 1, (3.18)

where S0 = 8π2/(g2N) is now 1/N -th of the 4d instanton action.
The reason that (3.18) does not reduce to (3.17) is due to the difference of confine-

ment mechanisms: the latter is due to magnetic bions and appears at order e−2S0 and
the former is due to monopoles and appears at order e−S0 in the semiclassical expansion.
It is interesting to note that the critical number of fundamental fermions (determined
by the change of mass gap behavior as a function of L at fixed Λ) increases to NF=3N
once Nadj=1. Since adding more fermions enhances the screening effects, it is not ex-
pected to increase the critical number of flavors and we are led to conclude that some
QCD(F) theories with Nf > 2.61Nc are also class-c. If we now use 1-adjoint as N fun-
damentals for perturbative purposes, it is then possible that all QCD(F) theories in the
2.5N<NF < 4N range are class-c. Now, it is of course possible that QCD(adj/F) theo-
ries with (1, 2.5N)<(Nadj, NF)<(1, 3N) themselves exhibit class-d behavior, in particular
if NF is close to 3N . Thus, their “image” QCD(F) theories are expected to be class-b
(since QCD(F) for NF near 4N has, at small ΛL, a mass gap decreasing with L). Thus,
the best we can argue is that NF = 4N is an upper bound for the lower boundary of
conformal window. We thus argue that, for QCD(F), class-c theories are in the domain
2.5N<NF<4N and the class-c domain ends up before it hits the 4N limit.

Eq. (3.18) also provides estimates for gauge theories with mixed-representation fermions,
as in the conformal house of [22]. We note that the result from deformation theory is much
closer to the γ = 1 estimates of ref. [22] than to the γ = 2 ones.

In table 2, we tabulate the estimate of the lower boundary of the conformal window
theories according to this “refinement” of our previous criterion, which we also show in the
table. The reader should bear in mind that the estimate NF = 4N is only an upper bound
on the lower boundary of conformal window. For convenience of the reader, we have also
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N D.T. 1a/1(a+c) Ladder (SD)-approx. Functional RG NSVZ-inspired: γ = 2/γ = 1 NAF
F

2 5/8 7.85 8.25 5.5/7.33 11

3 7.5/12 11.91 10 8.25/11 16.5

4 10/16 15.93 13.5 11/14.66 22

5 12.5/20 19.95 16.25 13.75/18.33 27.5

10 25/40 39.97 n/a 27.5/36.66 55

∞ 2.5N/4N 4N ∼ (2.75− 3.25)N 2.75N/3.66N 5.5N

Table 2. Estimates for the lower boundary of conformal window for QCD(F), N∗
F < NF < 5.5N .

The results of the deformation theory approach according to [1] are shown in the “D.T. 1a” column,
while those due to the “refined” estimate of this paper are shown under “D.T. 1(a+c)”.

S

AS

Adj

F

Figure 2. Conformal window estimates for QCD(F/AS/Adj/S) by using deformation theory and
the mass gap criterion of this paper (solid lines, upper limits on the lower boundary) and the
truncated Schwinger-Dyson approximation (dashed-lines). In order to not overcrowd the figure, we
do not plot the estimates of other approaches; see table 2.

listed the estimates of the ladder approximation to the Schwinger-Dyson equations [23–26],
NSVZ-inspired beta-function conjecture [27] (see also [28]), and functional renormalization
group approach [29]. Estimates were also obtained by using properties of the multi-loop
beta function [30, 31], via a conjectured thermal inequality [32] (see also discussion in [33]),
via the worldline formalism [8], and from a conjectured dual of QCD(F) [34]. It is also of
some interest to show the estimates of the ladder approximation and our approach based
on mass gap for gauge fluctuations for theories with Nf flavors of Dirac fermions in the
fundamental (F) and two-index representations — antisymmetric (AS), symmetric (S),
and adjoint (Adj). The results are plotted18 on figure 2. We also note that the recently

18The Schwinger-Dyson estimates for two-index representations are taken from [26, 27]. We thank T.

Ryttov and F. Sannino for sharing their Mathematica file with us.
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conjectured higher-representation dual of [35], like our “refined” estimate, also gives results
agreeing with the Schwinger-Dyson equations. For studies of conformal windows in SO an
SP gauge groups, see [9, 36].

The results plotted on the figure should look surprising: the ladder approximation does
not know anything about confinement and uses the two-loop beta function and the one-loop
result for the fermion-bilinear anomalous dimension. Our proposal uses the L-dependence
of mass gap for gauge fluctuations as an identifier, and employs semiclassical techniques
along with the one-loop beta function for dimensional transmutation. It is quite surprising
that these two ways to estimate conformal window produce such close estimates.

4 Topological disorder operators and chiral symmetry breaking

Chiral symmetry in ordinary QCD with fermions in a single (non-mixed) representation are
of two types: non-abelian continuous chiral symmetry and abelian discrete chiral symmetry.
The classical U(1)A axial symmetry is reduced to Z2hnf due to instantons, where 2hnf is
the number of zero modes in the instanton background. Theories with mixed representation
fermions have two types of classical axial symmetry U(1)A1×U(1)A2 , reduced by instanton
effects to a single U(1)A, similar to SUSY-QCD. Thus, the chiral symmetries can generally
be written as:

Gχ = Gnon−ab. ×Gab. =

{
Gnon−ab. × Z2hnf pure rep.
Gnon−ab. ×U(1)A mixed rep..

(4.1)

In what follows, this distinction between non-abelian and abelian chiral symmetry is par-
ticularly useful.

In the analysis of gauge theories on R3×S1, one of the interesting phenomena that we
have learned is that the pure flux operators in QCD-like theories are charged under the Gab.,
but neutral under Gnon−ab.. This means that, apart from chiral fermion condensates, the
pure monopole operators such as eiσ — the topological disorder operators which cannot
be locally expressed in terms of fields of the microscopic theory — are also good order
parameters for the chiral symmetry. In fact, in § 2, we showed that the Z20 chiral symmetry
of the SU(2) gauge theory with one fermion in 4-index representation is broken down to
Z2 by the condensation of a pure flux operator, 〈eiσ〉 = ei

2πk
N , k = 1, . . . , 10. In mixed

representation theories, 〈eiσ〉 = eiξ, ξ ∈ [0, 2π).
The abelian χSB, either discrete or continuous, induces mass for fermions in theories

without non-abelian chiral symmetries, i.e, the theories for which Gnon−ab. is trivial. These
are one-flavor QCD-like theories or mixed representation theories with (Nadj, NF) = (1, 1).
In theories for which Gnon−ab. is non-trivial, the spontaneous breaking of Gab. does not
induce a mass gap for fermions.

Let us explain, in generality, how the Gab. breaking takes place in the small S1 × R3

regime. Gab. is an exact symmetry of the microscopic theory, thus it must be an exact
symmetry of the long-distance effective theory (otherwise, it would be anomalous, which
is incorrect). Consider a typical monopole operator with its fermion zero-mode insertions.
The zero-modes structure is manifestly invariant under Gnon−ab., but rotates under Gab..
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In the long-distance theory without monopoles, there is also an infrared topological U(1)J
symmetry, which shifts the dual photon. The U(1)J symmetry intertwines with the Gab.

to render the monopole operator invariant:

[Gab. ×U(1)J ]→ [Gab.]∗ . (4.2)

The abelian shift symmetry [Gab.]∗ forbids all flux operators which are not invariant, and
since it is intertwined with the topological U(1)J , it may be referred to as topological shift
symmetry. In fact, all the bosonic potentials induced, typically, by non-selfdual topological
excitations in the semiclassical regime, obey:

[Gab.]∗ : V np(σ)→ V np([Gab.]∗σ) = V np(σ) , (4.3)

for both discrete and continuous abelian chiral symmetries. For the discrete symmetry case,
the topological shift symmetry [Gab.]∗ connects the h isolated vacua, while for continuous
U(1)A it implies an S1 vacuum manifold.

A few examples would be helpful. Consider one-flavor global anomaly-free SU(2) the-
ories with j = 1, 3

2 , 2 fermions. Then, the bosonic potentials are, respectively:

cos(2σ), cos(5σ), cos(10σ) , (4.4)

leading to two, five, and ten isolated vacua on R3×S1 (as we have seen in § 2, the last case
has runaway vacua, which means that they move to infinity in the decompactification limit).
For continuous χSB, a good example is discussed § 3.1, where V np(σ) = constant, σ ∈
[0, 2π). The vacuum expectation values and breaking patterns are, thus:{

〈eiαiσ〉 = ei
2πk
N , k = 1, . . . , h Zh → Z1 pure rep.

〈eiσ〉 = eiξ, ξ ∈ [0, 2π) U(1)A → Z1 mixed rep.
(4.5)

We reach to the following conclusions regarding abelian chiral symmetry breaking on small
S1 × R3:

• The dynamical breaking of the abelian chiral symmetry, either continuous or discrete,
upon a duality transform, maps into a spontaneous breaking by a tree level potential.
The potential is induced by non-selfdual topological excitations.

• This phenomenon occurs in a weakly-coupled domain where the anomalous dimension
of fermion bilinears is small γ(L) � 1 and the truncated Schwinger-Dyson (ladder)
approximation would not induce χSB.

• In theories with trivial Gnon−ab., the condensation 〈eiσ〉 6= 0 of topological excitations
with unit magnetic charge is capable of generating a 4d-complex mass for fermions.

It is usually accepted that dynamical symmetry breaking (DSB) is a difficult nonperturba-
tive phenomenon and that spontaneous breaking (SSB) by a potential is relatively simple.
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Remarkably, the duality transformation maps the problem of DSB to SSB by a tree level
potential.19

The second result is still surprising, but is somehow expected in the light of the first
one. SSB by a potential is a phenomenon that can happen at weak coupling as well. χSB
is induced in the ladder approximation if γψ̄ψ ' 1 is reached. By squeezing the space to
the perturbative domain L� Λ−1 and due to gauge symmetry breaking by the nontrivial
holonomy, the theory is engineered to remain in the γψ̄ψ(L)� 1 domain for small S1. Thus,
chiral symmetry cannot break to all orders in perturbation theory within this domain. The
solution to the gap equation would yield zero and the theory does not generate a mass term
for fermions. These are shortcomings of perturbation theory, as the topological disorder
operators, which are part of the dynamics and whose condensation can generate mass gap
for fermions, do not appear perturbatively.

In the small S1 domain, the condensate 〈eiσ〉 6= 0 also has an interesting physical in-
terpretation. eiσ(x) corresponds, in the original electric theory, to the insertion of magnetic
charge at point x ∈ R3. Thus, in the dual formulation of the theory, 〈eiσ〉 6= 0 is a vacuum
condensate of magnetically charged excitations. As shown in (3.10), such a condensate is
capable of giving a 4d-complex mass to the fermions in all non-abelian gauge theories for
which Gnon−ab. is trivial. Needless to say, since γψ̄ψ(L) � 1 in this regime, Gnon−ab. is
not broken either. In fact, in center-symmetric gauge theories, LNΛ� 1 is the domain of
confinement without non-abelian continuous χSB.
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A Mass gap of a theory versus mass gap for its gauge fluctuations

In ref. [1], the presence versus absence of a mass gap for the gauge fluctuations of a gauge
theory is proposed as an invariant characterization of confinement versus conformality in
non-abelian gauge theories with (chiral or vectorlike) fermionic matter. It is also stated
that the calculation of this quantity is out of reach on R4 with the present understanding of
chiral or vectorlike gauge theories. The recent progress allows its computation on R3×S1.

In this appendix, we will carefully distinguish the notion of presence vs. absence of
mass gap for gauge fluctuations from the presence versus absence of massless states in the
Hilbert space of the gauge theory.

Appendix A is a summary of mostly known aspects of gauge theories and follows very
closely Lecture 16 of Witten’s “Dynamical Aspects of QFT” lectures in [37]. Our addition

19It is commonly believed that if YM theory or QCD-like theories could ever be solved by duality,

nonperturbative phenomena such as mass gap for gauge fluctuations and chiral symmetry breaking would

be tree-level effects in the dual formulation. Indeed, this dream finds realization in one-flavor QCD-like

theories in the calculable small S1 × R3 domain.
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to this classification is very small — the existence of an exceptional case in one-flavor
theories which flow to CFTs and stating the existence of confining theories with both NG-
bosons and massless fermions. The last class was conjectured as a possibility by ’t Hooft,
and up to our knowledge, the examples we provide are the first examples of this type in
non-supersymmetric gauge theories.

A.1 Theories without continuous global symmetries

Nf = 0: Let two Wilson loops C1 and C2 be embedded into an R3 submanifold of R3×S1

and the separation between the two be labeled as d(C1, C2) (we assume d(C1, C2) is much
larger than the typical size of Ci’s). In the deformed-YM theory (YM∗) on R3 × S1, their
connected correlator is:

〈W (C1)W (C2)〉(L) = e−mg(L)d(C1,C2) + . . . YM∗ , (A.1)

where mg(L) is the mass gap profile of the theory as a function of L. The ellipsis stands
for excitations with higher mass that can be exchanged between the two loops, which are
suppressed exponentially. mg(L) is expected to saturate to its R4 value for LNΛ� 1 even
if LΛ� 1 as a result of the volume independence theorem of YM∗ theory [4]:

mg|YM, R4 = mg|YM∗, LNΛ�1 . (A.2)

Nf = 1: In QCD(R)∗ theories without continuous global symmetries, the form of the
connected correlator is again the same. The leading term will be due to exchange of the
massive excitations, and perhaps an “eta-prime.”

Exception: Theories withNf ≤ 1 are usually believed to possess a mass gap. An exception
is the class of multi-index one-flavor CFTs discussed in this work.

A.2 Confining theories with continuous global symmetries

2 ≤ Nf < N∗f : There are remarkably powerful theorems for this class of theories, mainly
put forward by ’t Hooft. Let the anomaly-free global chiral symmetry of the theory be
Gχ, and its associated currents be Ja, a = 1, . . . ,dim(Gχ). The idea is to use the short-
distance physics to constrain the massless degrees of freedom of the long-distance physics
by considering the anomalies these symmetries would have if they were gauged. Since
anomalies are an all-scale property of a gauge theory, it is possible to prove the presence
of gapless spin-0 or spin-1

2 excitations in the IR theory.
The “’t Hooft anomalies” of the short-distance theory can be extracted from the 3-

point functions of the currents Ja and are encoded in the invariant cubic tensor dabc =
1
2trT a{T b, T c} where T a, a = 1, . . . ,dim(Gχ), are the generators of Gχ, and the trace is
taken over the massless (in the UV) fermion representations. There are three cases allowing
the short distance anomalies to be reproduced by massless IR-degrees of freedom:

i) only by massless NG-bosons (by the tree-level IR chiral Lagrangian),

ii) only by massless composite fermions (by an IR-loop effect),
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iii) by a combination of massless spin-0 and spin-1
2 particles (tree-level for spin-0 and

loop effect for spin–1
2).

We believe that all three cases find realization in non-supersymmetric vectorlike or chiral
gauge theories. More explanation and examples of each class are given below.

We assume that the theory has a generic chiral symmetry breaking pattern:

Gχ −→ G̃ . (A.3)

i) If G̃ is the maximal vectorlike subgroup of Gχ, anomalies restricted to G̃ vanish,
dabc| eG = 0. In the infrared, Ja5,µ ∼ ∂µπ

a and the d-tensor of the UV theory can be
reproduced by pions πa of the broken chiral symmetry Gχ/G̃, similar to the chiral
limit of QCD. The masslessness of the NG-bosons is protected by broken symmetry
and the Goldstone theorem.

ii) If G̃ = Gχ, the theory exhibits confinement without chiral symmetry breaking and
there are no Goldstone bosons. The UV anomalies are reproduced by massless com-
posite fermions. The masslessness of the fermions is due to the unbroken chiral sym-
metry. Examples are the SU(N) chiral theory with one anti-symmetric (symmetric)
and N−4(N+4) antifundamental left handed-Weyl fermions.

iii) It is possible that G̃ be a proper subgroup of Gχ and dabc| eG 6= 0, i.e, G̃ is still chiral.
The first non-supersymmetric examples (we are aware of) in this class are provided
by the multi-generation 2 ≤ NW ≤ N∗W generalization of the chiral gauge theories
given above.20

The IR limits of these three classes of confining gauge theories are free. The long distance
physics is described by massless bosons, massless fermions, or both. Thus, the connected
correlator of the two-well separated Wilson loops will be dominated by the massless long-
distance modes:

〈W (C1)W (C2)〉|R4 = (free IR− limit contribution) + e−mgd(C1,C2) + . . . . (A.4)

In the expansion, the exchange due to glue (gauge fluctuations) will be extremely sup-
pressed, but is nonetheless present in the full theory. The exponent of this sub-leading
term is what we mean by “mass gap for gauge fluctuations” in this class of theories. We
should, however, admit that this notion is not unambiguously defined on R4; for example,
in QCD mg receives contributions of pairs of ρ-mesons as well as glueballs. However, as
we explain in the following appendix B on R3 × S1, this notion can be made unambiguous
at least for small L.

20These theories are discussed in [1]. The anomaly matching is not studied in literature (however, see

the most attractive channel study of related theories in [38]). Nonetheless, we checked that if one assumeseG = Gχ, the anomalies cannot be saturated by the massless fermions. This implies that eG must be a proper

subgroup of Gχ and anomalies must be saturated by both Goldstone bosons and fermions.
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A.3 Conformal theories with continuous global symmetries

N∗f < Nf < NAF
f : These are asymptotically free vectorlike or chiral theories, whose IR

limit is an interacting CFT. In this class, the ’t Hooft anomaly matching is trivially satisfied.
This class of theories break no global symmetries. In these theories, both fermions as
well as gauge fluctuations remain massless non-perturbatively. Thus, in the connected
correlator (A.4) for such theories, there are no dynamically generated scales, i.e, mg = 0.

B Wilson loop correlators on R3×S1 and mass gap for gauge fluctuations

It is well-known that Wilson (order) and ’t Hooft (disorder) operators (or their more
elaborate refinements) may be used in determining the infrared behavior, and may in
principle be used to determine conformal vs. confining behavior of an asymptotically free
gauge theory. Although it is implicitly known that the mass gap for gauge fluctuations may
also serve the same goal, the problem is almost never stated in these terms. The reason is
clear: It is hard to isolate this observable from a correlator. A typical gauge theory with
2 ≤ Nf ≤ N∗f has an IR-free description in terms of NG-bosons and/or fermions and such
IR descriptions “forget” about the massive glueball-like particles. This, however, does not
mean that these states are absent in the full theory; we would like to take advantage of that.

In the recently developed twisted partition function and/or deformation theory for-
malism, it is understood that the mass gap for gauge fluctuation is indeed calculable on
R3×S1 as a function of L in a domain where semiclassical analysis is reliable. This is true
irrespective of the chiral or vectorlike nature of the theory. The limit L → ∞ of mσ(L)
determines conformal or confining behavior.

Now, we present some ideas on how to extract the profiles shown in figure 1, for
example, using lattice gauge theory.21 It is necessary to use an asymmetric lattice T 3×S1,
which mimics R3×S1. With this in mind, the discussion can also be given in the continuum.
We stabilize the center symmetry to guarantee smoothness in the sense of (approximate)
center symmetry. Then, assume the theory under consideration has some global anomaly-
free U(1)B or A (vectorlike or chiral) symmetry. In the weakly coupled domain of any of
such theories, the Wilson line behaves as an adjoint Higgs field, and typically provides a
real, chiral-symmetric 3d mass term for the fermions. For a generic Weyl fermion, this is:

ψσµDµψ → ψ(σiDi + iσ4〈A4〉)ψ . (B.1)

Most fermionic matter will acquire mass of order 1/L due to the 〈A4〉 vev. If there are
massless modes left over, we use boundary conditions with either a U(1)B or U(1)A twist:

ψ(L) = eiαψ(0) . (B.2)

By a field redefinition ψ′(x, x4) = e−i
αx4
L ψ(x, x4), the periodicity of the fermion may be

regained, while α
L ≡ m is absorbed into the Dirac operator as a 3d chiral-symmetric real

21In what follows, QCD(adj) is not included as confinement already has a precise definition in terms of

Wilson loops in the defining representation. Our goal below is to provide such an unambiguous definition

for all QCD-like or chiral theories with complex representation fermions, such as fundamental. The mass

gap in the gauge sector serves this goal.
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mass term. Thus, (B.1) becomes:

ψ
′[σiDi + iσ4(〈A4〉+m)]ψ′ . (B.3)

The point of this manipulation22 is to give chirally-symmetric masses of order 1/L to all the
the degrees of freedom but the gauge bosons in the Cartan subalgebra; note, however, that
additional chiral violating fermion mass terms can be generated by topological disorder
operators as described in section 4.

The twist (B.2) does not alter the mechanisms of confinement for gauge theories on
R3 × S1, in particular the analysis of refs. [1, 3] remains valid. Since all center-stabilized
gauge theories with Nf ≤ NAF

f fermions have a semiclassical domain with confinement
without chiral symmetry breaking and since, in this domain, we can lift fermion zero modes
by using judiciously chosen U(1) twists, the only light modes are the ones associated with
the gauge sector, and the following relation holds:

〈W (C1)W (C2)〉|twist(L) = e−mg(L)d(C1,C2) + . . . (B.4)

The subscript “twist” is used to remind the reader that a judiciously chosen boundary
condition is used. Here, mg(L) is the “mass gap for gauge fluctuations,” which is unam-
biguously defined in the semiclassical, center-symmetric, small-L regime.

We believe that for IR-CFTs with N∗f < Nf < NAF
f , the mass gap obtained in this

way will exhibit an m(L) ∼ 1
Le
−aS0 scaling, where a is a number depending on the details

of the theory (a = 1 for magnetic bions, which is the most generic case).
For confining gauge theories with continuous global symmetries, we expect:

〈W (C1)W (C2)〉|twist(L) =

{
e−mg(L)d(C1,C2) + . . . LNΛ� 1
(Free IR− limit) + e−mg(L)d(C1,C2) + . . . LNΛ� 1 ,

(B.5)

where LNΛ� 1 is the domain of abelian confinement and mg(L) is expected to show the
profiles shown in figure 1a or c. LNΛ� 1 is the domain of non-abelian confinement, and
it is expected that the mass gap in gauge sector will saturate to its R4 value (in particular,
no 1/L type scaling should appear here and uniformity must set in). In most theories of
this class, these two regimes are split by a single chiral phase transition. Nevertheless,
we hope that our operator description in terms of two-point connected correlators can be
usefully applied to pin down the conformal window numerically.23

Note that in IR-CFTs probed by such connected correlators, the path to large volume
is smooth — the theory is always in the confinement without χSB regime with a decreasing
mass gap which vanishes in the decompactification limit. For confined theories, there is
a critical radius where there is (typically) a chiral transition. The absence or presence of
this singular behavior is also sufficient to deduce whether the corresponding theory on R4

flows to conformality or confinement in the long-distance regime.
22We stress that the twist in (B.2) has to correspond to an anomaly-free U(1)A or B symmetry, to avoid

the generation of Chern-Simons terms which alter the infrared dynamics [11].
23This may be technically challenging: simulations in sufficiently large volumes, using massless fermions

with a (possibly chiral) twist (B.2), must be accessible in order to separate the different scales, e.g.

L−1�mg ∼ Λ�1/a, where a is the lattice spacing.
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C Mixed chiral/vectorlike representations (added in proofs)

After this paper was submitted for publication, ref. [39] appeared, studying conformal
windows of theories with mixed chiral and vectorlike representations in the framework of
the proposed all-orders beta function (for older work on this subject based on the thermal
inequality, see refs. [40, 41]). Since mixed-representation theories are considered in this
paper, in order to facilitate comparison between the results of different approaches, we now
give the estimates of deformation theory for the conformal windows in these theories. We
feel that a comparison is important to the better understanding of the various approaches
and in their development.24

We consider three classes of mixed chiral/vector-like representation theories. These
theories are composed of Ng chiral “generations” and Nf vectorlike generations of massless
fundamental Dirac fermions. These three classes are:25

• Type(A) Ng[AS, (N − 4)F ] +Nf (F, F )

• Type(S) Ng[S, (N + 4)F ] +Nf (F, F )

• Chiral quivers:
⊕K

J=1

[
Ng(1, . . . , NJ , NJ+1, . . . 1) +Nf (1, . . . , (F, F )J , . . . 1)

]
The gauge group for the first two classes is SU(N) and for the chiral quivers, it is SU(N)K .

In a mixed chiral/vector-like gauge theory of the above type and for a generic value of
N , the mass gap for gauge fluctuations is induced predominantly by magnetic bions. This
data can be extracted by using the structure of the fermionic zero modes of monopole oper-
ators and can be found in [1]. According to our criterion, as discussed in the Introduction,
if the mass gap for gauge fluctuation is an increasing function of L for a given (Ng, Nf ),
we claim that such theories exhibit confinement in the R4 limit; if the mass gap in gauge
sector is a decreasing function which asymptotes to zero, then we expect such theories to
flow to conformality in the R4 limit. (Certainly, by the definition of interacting CFTs on
R4, massive gluons are not acceptable.)

Taking the bion contribution as the leading one, we find that the mass gap for gauge
fluctuations is:

mσ ∼
1
L
e−S0 = Λ(ΛL)

8N−2Nf−2Ng(N−3a)

3N , (C.1)

where a = 1 for Type(A), a = −1 for Type(S), a = 0 for chiral quivers. The mass gap
decreases as L increases for Nf + (N − 3a)Ng > 4N . Thus our estimate for the lower
boundary of the conformal window for these theories are:

Type(A) : N∗f + (N − 3)N∗g = 4N .

Type(S) : N∗f + (N + 3)N∗g = 4N .

Chiral quivers : N∗f +NN∗g = 4N . (C.2)

24We do not give many details, as the analysis of the dynamics of the chiral and vector-like theories on

R3 × S1 is very similar to the analysis of other models in this paper and in [1].
25The Type(A) Ng = 1 theories with arbitrary Nf is also called a “generalized-GG”-model, whereas the

Type(S) Ng = 1 theories with arbitrary Nf is sometimes called a “generalized-BY”-model [39].
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Few comments are in order: For Ng = 0, this result gives us our estimates for the lower
boundary in QCD(F) theory. For Nf = 0, the purely chiral case, these estimates are the
one given in our earlier work [1].

The Type(A) and Type(S) theories with Ng = 0, 1 are recently analyzed in the frame-
work of the proposed all-orders-beta function in [39]. That analysis can be generalized
easily to all the theories that we discuss above. If one uses γ = 1 (for vector-like matter)
in order to determine the conformal window boundary, one finds

3N∗f + 2N∗g (N − 3a) = 11N (C.3)

where a = ±, 0 for the three class of theories. For the purely vector-like case, this gives the
γ = 1 estimate of [27], while for Ng = 1, it gives N∗f = 3N ± 2a, which is very close to our
N∗f = 3N ± 3a.

However, despite this close agreement between our result in the vector-like or mostly
vector-like cases, there is a sharp disagreement of results as one approaches to purely chiral
Nf = 0 (or mostly chiral) theories. Our formalism, in the pure chiral case, predicts the
existence of a conformal window, starting at N∗g = 4N

N−3a , whereas the asymptotic freedom
boundary is located at NAF

g = 11N
2(N−3a) . The formalism of [39] predicts that N∗g = 11N

2(N−3a) ,
in other words, the absence of conformal window in purely chiral theories.

The reason that ref. [39] predicts the absence of a conformal window for purely chiral
theories can be seen in the proposed all-orders beta function, where the anomalous dimen-
sion of a fermion bilinear enters. However, in a purely chiral theory, there are no such
gauge invariant fermion bilinears. This leads ref. [39] to the conclusion that conformal
window for such theories should coincide with the vanishing of the first coefficient of the
beta function.

We think that it is natural to expect that purely chiral “multi-generation” theories can
have conformal windows. To this end, we note the existence of a large-N orbifold equiv-
alence between multi-adjoint vectorlike theories and their ZK orbifold projections, which
are chiral quiver theories, i.e., SU(NK) −→ SU(N)K . The non-perturbative validity of
this equivalence relies on unbroken discrete ZK chiral symmetry in the parent QCD(adj)
and unbroken discrete ZK translation symmetry of the daughter chiral quiver theory.26 It
is currently believed that QCD(adj) theories indeed possess a conformal window. If true,
this implies the absence of discrete chiral symmetry breaking for the QCD(adj) theories in
the conformal window. Thus, the validity of the equivalence relies on the ZK translation
symmetry of the daughter quiver theory. Currently, there exist no evidence which may
suggest this latter symmetry is spontaneously broken. Thus, it is plausible, but unproven,
that there exists a non-perturbative equivalence between conformal QCD(adj) and confor-
mal chiral quiver theories. If true, this requires that in multi-generation chiral quivers a
conformal window should exist (as found with the present approach in [1]), as it does in
the multi-adjoint theories. For chiral theories of Type(A) and Type(S), there exist no such

26This condition is obviously violated for the QCD(adj) theories in the confining domain. Thus, there

exist no large-N equivalence between confining QCD(adj) and its chiral daughters [42]. Whereas, above,

we suggest that there may indeed be such equivalences between conformal vector-like and chiral theories.
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useful large-N equivalences which relates them to vector-like theories. However, currently
there is no evidence that may suggest the absence of a conformal window, apart from the
proposed all-order beta function.
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